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NOTATION 

L 

AU>. 

-X 

Relative  Wind 

-z 

High Wing 

Relative     Wind 

L 

-z 

Low Wing 

Axis Force 
Force 

Coefficient 
Moment 

Coefficient 

D   (X) D  (drag) CD - D/qS 
C    = M/qSc 

L  (Z) L (lift) CL =  L/qS 
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SYMBOLS 

c       wing center-line chord, inches 

c.p.     center of pressure (from wing apex), inches 

Cn      drag coefficient 

CT      lift coefficient L 

C       pitching moment coefficient m r o 

D drag,   lb 

L lift,   lb 

L/D lift-to-drag ratio 

M Mach number 

p pressure,  psi 

q dynamic pressure,   psi 

Re Reynolds number 

5 projected wing area,   in3 

T temperature,  0R 

a angle of attack,  degrees 

6 wing-tip dihedral  (positive, toward  the fuselage), degrees 

Subscripts 

b base of fuselage 

t stagnation conditions 

00 free-stream conditions 

Configuration Identification Code 

Wings:        Wl - Series  1 Wings  (Straight Trailing Edges) 

W2  - Series 2 Wings   (Extended Trailing Edges) 

Bodies :       Bl  -  Low-Volume Fuselage 

B2  - High-Volume Fuselage 
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SUMMARY 

Wind-tunnel  tests were conducted at a Mach number of 6.26 to 

determine  the longitudinal aerodynamic characteristics of several 

conceptual hypersonic aircraft configurations,  consisting of various 

half-cone—cylinder bodies and double-delta wings.    Effects of body 

volume, vehicle orientation, wing planform,   and wing-tip dihedral were 

determined.     In general,   the lift-to-drag ratios of all high-wing con- 

figurations varied slightly over an angle-of-attack range of 0°  to  12°, 

reaching maximum values of roughly 3.2 near 6°.    On the other hand,   the 

lift-to-drag ratios of all low-wing configurations increased continu- 

ously with increasing angle of attack,  eventually reaching maximum 

values of roughly 3.6 near 10°.     In all cases,   fuselage base drag ac- 

counted for less  than 10 percent of the  total drag.     For  the arbitrarily 

chosen center-of-gravlty location,   all low-wing configurations were 

stable but unbalanced;  whereas several high-wing configurations were 

both stable and balanced. 

INTRODUCTION 

Several recent studies (References 1  through 4)  have  Indicated 

that hypersonic cruise aircraft will probably require an air-breathing 

propulsion system utilizing liquid hydrogen  fuel in order to obtain ade- 

quate range-payload performance characteristics.    As a result of  the 

very low density of this  fuel  (less taan one-tenth that of conventional 

hydrocarbons),  hypersonic aircraft will be  characterized by very  large 

fuselages necessary to contain an adequate  supply of this high-energy 

propellant.    The present investigation was undertaken to determine  the 

longitudinal aerodynamic characteristics of several wing-body config- 

urations,   compatible with the aforementioned requirements and the gen- 

eral design philosophy dlocussed in Reference 5.    These configurations 

were previously tested at a Mach number of 9.45 (Reference 6); the re- 

sults of tests  performed at a Mach number of 6.26 are presented herein. 

All  tests were performed in the öpen-Jet  Hypersonic Wind Tunnel of the 

David Taylor Model Basin Aerodynamics Laboratory at a unit Reynolds 

number of approximately 75,000 per inch. 



MODELS AND TEST APPARATUS 

The models consisted of two families of double-delta wings with 

cyllndrlcally blunted  leading edges and two half-cone—cylinder fuselages. 

One family of wings had straight trailing edges, and the other had ex- 

tended trailing edges;   both series of wings had wing-tip dihedral of 0° 

and 45° and a constant  thickness equal  to 1.25 percent of the wing center- 

line chord (Figure 1).     Positive and negative dihedral were obtained by 

mounting the wing so that the wing-tip deflection was toward and away from 

the fuselage,  respectively.    Both bodies had the same  length but different 

maximum diameters  (Figure 2).    The wings and bodies were machined from 

stainless steel,  and were completely Interchangeable.    A typical complete 

wing-body configuration is shown In Figure 3. 

Force data were obtained with a Task Corporation,   six-component,  in- 

ternal strain-gage balance.    Data readout was  acquired with a Beckman 210 

solid-state system,  which senses,  measures,  digitizes,  and records  the test 

data on magnetic  tape  for direct entry into an IBM 7090 computer.     Fuselage 

base pressure was measured with a Pace 0-0.3 psid transducer.    The data 

repeatability was as follows: 

(^ ±0.002 L/D ±0.04 

CD ....  ± 0.001 M       ± 0.02 

C    ....  ±0.0001 c.p.   ...  ±0.02 in. m 

TEST CONDITIONS AND PROCEDURES 

All tests were conducted under the following free-stream conditions: 

Average      Maximum      Minimum 

P . psi 0.0506       0.0514       0.0499 
00 

o, V 0R 145.5 147.6 143.7 

q«,, psi 1.381 1.401 1.361 

M 6.26 6.32 6.19 

Re, per inch 77,490 80,780 74,690 
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All pu^ible wing-body combinations were tested by varying the angle 

of attack of the model between limits of ±12° at a constant rate of one 

degree per second, while simultaneously obtaining continuous data during 

wind-tunnel operation.  Physically, the models were mounted in the wind 

tunnel with the wing on top of the body.  For each run, the data for half 

the angular range (upward) were interpreted as representing a high-wing 

model at positive a,  the other half (downward) representing a low-wing 

model also at positive a. Force and moment components were measured, from 

which the following quantities were computed:  C., C_, L/D, C , and c.p. 
'   ' L      D m 

Fuselage base pressure was measured behind the cylindrical afterbody, mid- 

way between the  sting and outer edge of  the body. 

RESULTS AND DISCUSSION 

Lift,  drag,   and pitching moment coefficients,  aerodynamic  efficiency, 

and center of pressure were obtained  for all possible wing-body combina- 

tions for angles of attack up to 12°.    All coefficients are presented as a 

function of a (Figures 4 through 13),  and are referenced to the projected wing 

area and wing center-line chord.     The axis  system,  fcrce and pitching moment 

coefficients,   and configuration identification code are defined in the nota- 

tion and symbols.     The  effects of body volume,  vehicle orientation  (high- 

wing or  low-wing),  wing planform,  and wing-tip dihedral are discussed in 

the  following paragraphs.    A comparison is made between the experimental 

results and theoretical calculations of  the aerodynamic efficiency for two 

representative high-wing,   flat-plate configurations  (B1W1 and B2W2). 

AERODYNAMIC EFFICIENCY 

For the high-wing configurations,   the  lift-to-drag ratio was positive 

at an angle of attack of 0°,  reached a maximum value of roughly 3.2 at 

a ps 6°,  and decreased slightly thereafter.    For the low-wing configurations, 

on the other hand,   the  llft-to-drag ratio was negative at an angle of attack 

of 0°, but it  Increased with Increasing ot,  to a maximum value of roughly 

3.6 near a =  10°   (Figure 6).    Values of  (L/D)        at M « 6.26 were about 

15 percent higher  than  those obtained  for correspor.-Hng configurations at 

M = 9.45  (Reference 6). 

-3- 
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The lift-to-drag ratios of the configurations with the small  (Bl) 

fuselage were higher than those of corresponding configurations with 

the  large (B2)  fuselage over most of the angle-of-attack range  (Figure 6). 

Deflecting the wing tips of the high-wing configurations into the relative 

wind  (6 = 45°)  Increased the aerodynamic efficiency except at the higher 

angles of attack (Figure 7a).    Deflecting the wing tips of the low-wing 

configurations into the relative wind (6 ■  -45°,   in this case)  gave higher 

L/D ratios than the configurations without dihedral up to a fa 5°;  nega- 

tive dihedral was also superior to positive dihedral up to or «s 10°   (Figure 

7b).     In general,  configurations with Series 2 Wings had slightly better 

L/D ratios than corresponding configurations with Series 1 Wings  (Figure 

8).     In all cases,  the base drag accounted for less than 10 percent of 

the total drag. 

Newtonian Impact  theory was used to calculate the lift-to-drag ratio 

of two  flat-plate,  high-wing configurations;   namely,   B1W1 and B2W2.     The 

pertinent equations were obtained or derived  from Reference 7.    Each com- 

plete wing-body configuration was considered as three component parts: 

(1)  half-cone forebody,   (2)  half-cylinder afterbody,  and  (3)  wing.     The 

coefficients were corrected  to a common reference area (the exposed wing 

area)   and then added for each component part   to ob.aln the total  coef- 

ficients of a complete wing-body configuration.    Initial computations, 

neglecting wing thickness,  produced fairly poor correlation with  the ex- 

perimental data  (Figure  9).     Including the drag of  the cylindrlcally 

blunted wing leading edge gave considerably bettet   agreement.    A further 

attempt was made  to improve  the  results by accounting for skin-friction 

drag.     The following simplifying assumptions were made:     (1)   the  total 

exposed wing-body area was  treated as a flat plate,   and  (2)   the skin- 

friction was considered  independent of a.    For a Reynolds number based 

on  the wing center-line chord,   the coefficient of friction  (Cf) was 

obtained from Figure 3 of Reference 8 by extrapolation to the existing 

temperature ratio.     This viscous drag coefficient was corrected  to  the 

common  reference area and added to  the Newtonian drag coefficient,   pro- 

ducing  excellent agreemert with the experimental data at o- = 0°  and 

o- »  12°.    At intermediate angles of attack,   the experimental  results 



were considerably higher than the theoretical values.    On the other 

hand,  at M « 9.45,   excellent correlation was obtained between  theory 

and experiment over the entire angle-of-attack range. 

LONGITUDINAL STATIC STABILITY 

The longitudinal static stability characteristics are summarized 

In Tables  1 and 2.     The  evaluation of  the various configurations,   in 

terms of C  ,  was based on a center of gravity located seven Inches  from 
m > 

the wing apex (63,6 percent of the wing center-line chord).  The pitch- 

ing moment coefficients of all configurations were computed about this 

e.g. location, even though it will vary slightly with different wing- 

body combinations.  Nevertheless, the arbitrarily chosen e.g. position 

is believed to be fairly representative of a similarly designed, full- 

scale aircraft. Moving the center of gravity forward or aft will affect 

the stability characteristics accordingly, but the relative merits of 

the various configurations should remain unchanged. 

The high-wing configurations with 6 = -45° were unstable and un- 

balanced (Figure 10c).  Of the remaining configurations, those with W2 

wings were more stable than the corresponding configurations with Wl 

wings (Figures 10 and 11). All low-wing configurations were stable 

but unbalanced; whereas several high-wing configurations with 6=0° 

and 6 -  45° were both stable and balanced (Figure 12). Moreover, a 

few of these high-wing configurations were balanced at angles of attack 

corresponding to the maximum lift-to-drag ratio (Figure 7).  The center 

of pressure was practically Independent of angle of attack for 4 < a < 12° 

for all high-wing configurations and nearly independent of angle of attack 

for 8° < a < 12° for all low-wing configurations (Figure 13). 

Aerodynamics Laboratory 
David Taylor Model Basin 
Washington, D. 0. 
April 1966 
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Table  1 

Summary of Longitudinal Static Stability Characteristics 

(High-Wing Configurations) 

Body 
Wing-Tip 
Dihedral Stability Characteristics Remarks 

Series 1 Wings (Straight Trailing Edges) 

6 = 0° Stable and balanced A 

B1 6 = 45° Stable and Marginally balanced NA.  { 

6 = -45° Unstable and unbalanced NA  | 

6 = 0° Stable and unbalanced NA 

|  B2 6 = 45° Stable and balanced A 

6 = -45° Unstable and unbalanced NA 

Series 2 Wings (Extended Trailing Edges) 

6 = 0° Stable and balanced A   | 

Bl 6 = 45° Stable and unbalanced NA 

6 = -45° Marginally stable and unbalanced NA 

6 = 0° Stable and balanced A   ' 

B2 6 = 45° Stable and marginally balanced  j NA 

6 = -45° Unstable and unbalanced       | NA 

A - Acceptable 

NA  - Not Acceptable 



•f— -w^m-:-' r^-r•s^^~. " 

1 
Table 2 

Summary of Longitudinal  Static Stability Characteristics 

(Low-Wing Configurations) 

Body 
Wing-Tip 
Dihedral Stability Characteristics Remarks 

Series 1 Wings (Straight Trailing Edges) 

6 - 0° Stable and unbalanced m 
Bl 6 - 45° Stable and unbalanced m 

6 - -45° Stable and unbalanced m 

6 - 0° Stable and unbalanced m 
B2 6 - 45° Stable and unbalanced m 

6 - -45° Stable and unbalanced NA 

Series 2 Wings (Extended Trailing Edges) 

6 = 0° Stable and unbalanced m 
Bl 6 = 45° Stable and marginally balanced m 

6 = -45° Stable and unbalanced NA 

6 = 0° Stable and unbalanced m 
B2 6 = 45° Stable and unbalanced m 

6 - -45° Stable and unbalanced NA 

A  - Acceptable 

NA  - Not Acceptable 

•8- 



-0.138' 

Series  1 Wings   (Straight Trailing Edges) 

.0.138" 

Series 2 Wings (Extended Trailing Edges) 

Figure 1 - Principal Dimensions of Wing Configurations 
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0.01" R . 

1.00" R 

-O.SO" 

t^^fe 
0.75"  Ola. 

4.00" 

(a) Low-Volume Fuselage 

0.03" R- 

1.23" R 

0.623" 

1.00"  Dla. 

(b)  High-Volume Fuselage 

Figure 2 - Principal Dimensions of Fuselage Configurations 
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(a) High-Wing Configuration 

(b) Low-Wing Configuration 

Figure 3 - Photographs of a Typical Wing-Body 

Configuration (B1W2 ; 6 = -45°) 

P3D-319,052 -11- August 1965 
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Figure 6 - Effects of Body Volume and Vehicle Orientation 

on Aerodynamic Efficiency 

(a) Series 1 Wings 
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